Vector2D | Vector3D
Vector3D stores a mathematical vector in 3 dimensions. You can create it from cartesian (x, y, z) with new Vector3D(x, y, z)
, spherical (r, θ, φ) using Vector3D(magnitude, theta, phi)
, or polar (r, θ) using only 2 dimensions with Vector2D.fromPolar2D(r, theta)
, where "theta" is an Angle object.
Vector3D has 6 getters:
And static methods to compute the dot product, cross product, and separation of two Vector3D objects.
public static double dotProduct(Vector3D v1, Vector3D v2)
public static Vector3D crossProduct(Vector3D v1, Vector3D v2)
public static Angle angularSeparation(Vector3D ref, Vector3D vector)
ftc/electronvolts/util/Vector3D.java
package ftc.electronvolts.util;
import ftc.electronvolts.util.units.Angle;
/**
* This file was made by the electronVolts, FTC team 7393
* Date Created: 9/30/16
*/
public class Vector3D {
/*
* the 3 components of the vector
*/
private final double x;
private final double y;
private final double z;
/*
* the spherical coordinates
*/
private final double l;
private final Angle theta;
private final Angle phi;
/**
* create a vector using polar coordinates with z = 0
*
* @param magnitude the magnitude of the Vector2D
* @param theta the direction of the Vector2D
* @return the created Vector3D
*/
public static Vector3D fromPolar2D(double magnitude, Angle theta) {
return from2D(new Vector2D(magnitude, theta));
}
/**
* create a vector from a Vector2D with z = 0
*
* @param vector2D the 2D vector to use
* @return the created Vector3D
*/
public static Vector3D from2D(Vector2D vector2D) {
return new Vector3D(vector2D.getX(), vector2D.getY(), 0);
}
/**
* Create a vector using spherical coordinates
*
* @param magnitude the magnitude of the 3D vector
* @param theta the direction in the x-y plane
* @param phi the z direction
* @return
*/
public Vector3D(double magnitude, Angle theta, Angle phi) {
double thetaRads = theta.radians();
double phiRads = phi.radians();
// http://mathinsight.org/spherical_coordinates
// x = ρ sinϕ cosθ
// y = ρ sinϕ sinθ
// z = ρ cosϕ
this.x = magnitude * Math.sin(phiRads) * Math.cos(thetaRads);
this.y = magnitude * Math.sin(phiRads) * Math.sin(thetaRads);
this.z = magnitude * Math.cos(phiRads);
this.l = magnitude;
this.theta = theta;
this.phi = phi;
}
/**
* create a vector using x, y, and z
*
* @param x x component
* @param y y component
* @param z z component
*/
public Vector3D(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
//Pythagorean theorem
this.l = Math.sqrt(x * x + y * y + z * z);
//compute spherical coordinates
phi = Angle.fromRadians(Math.acos(z / l));
theta = Angle.fromRadians(Math.atan2(y, x));
}
/**
* @return the x component of the vector
*/
public double getX() {
return x;
}
/**
* @return the y component of the vector
*/
public double getY() {
return y;
}
/**
* @return the z component of the vector
*/
public double getZ() {
return z;
}
/**
* @return the length or magnitude of the vector
*/
public double getLength() {
return l;
}
/**
* @return the z direction
*/
public Angle getPhi() {
return phi;
}
/**
* @return the x-y direction
*/
public Angle getTheta() {
return theta;
}
/**
* @return a new vector that is normalized (length = 1)
*/
public Vector3D normalized() {
return new Vector3D(x / l, y / l, z / l);
}
/**
* Order matters for the cross product
*
* @param v1 the first vector
* @param v2 the second vector
* @return the first vector crossed with the second vector
*/
public static Vector3D crossProduct(Vector3D v1, Vector3D v2) {
double x = v1.y * v2.z - v1.z * v2.y;
double y = v1.z * v2.x - v1.x * v2.z;
double z = v1.x * v2.y - v1.y * v2.x;
return new Vector3D(x, y, z);
}
/**
* The order does not matter for the dot product
*
* @param v1 one vector
* @param v2 another vector
* @return the dot product of the two vectors
*/
public static double dotProduct(Vector3D v1, Vector3D v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
/**
*
* @param v1 one vector
* @param v2 another vector
* @return the angle between the two vectors
*/
public static Angle angularSeparation(Vector3D v1, Vector3D v2){
// a dot b
//cos theta = ---------
// |a| * |b|
return Angle.fromRadians(Math.acos(dotProduct(v1, v2) / (v1.l * v2.l)));
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(x);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(y);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(z);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (obj == null) return false;
if (getClass() != obj.getClass()) return false;
Vector3D other = (Vector3D) obj;
if (Double.doubleToLongBits(x) != Double.doubleToLongBits(other.x)) return false;
if (Double.doubleToLongBits(y) != Double.doubleToLongBits(other.y)) return false;
if (Double.doubleToLongBits(z) != Double.doubleToLongBits(other.z)) return false;
return true;
}
@Override
public String toString() {
return "(" + x + ", " + y + ", " + z + ")";
}
}